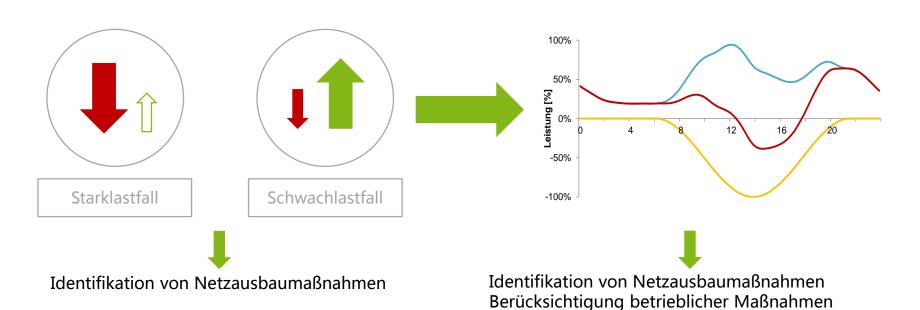


Das Potential spannungsebenenübergreifender Zeitreihensimulationen für die Verteilnetzplanung

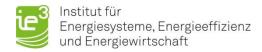
Johannes Hiry, Chris Kittl, Zita Hagemann, Christian Rehtanz


Die Veränderung des Energiesystems ...

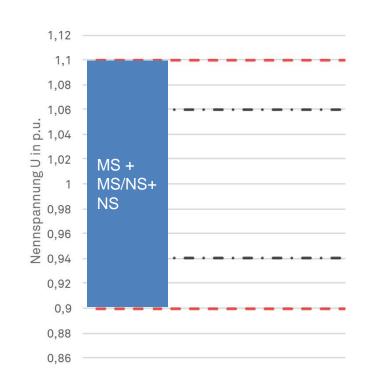
Biomasse Warmepumpe
Photovoltaik Photovoltaik Smart Home


Side July July Photovoltaik Photovoltaik Smart Home

Flexibilität
Dezentrale Steuerung
Regelalgorithmen
Demand-Side-Management
Wärmepumpe
Elektromobilität
Eigenvermarktung
Smart Home

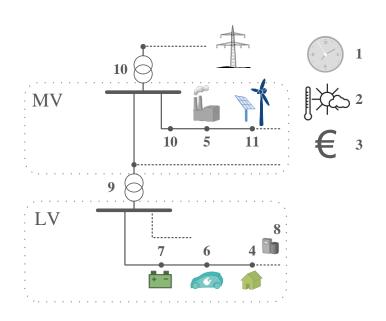

... erfordert eine Veränderung des Verteilnetzplanungsprozesses

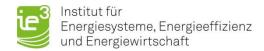
Berücksichtigung neu auftretender


Interdependenzen

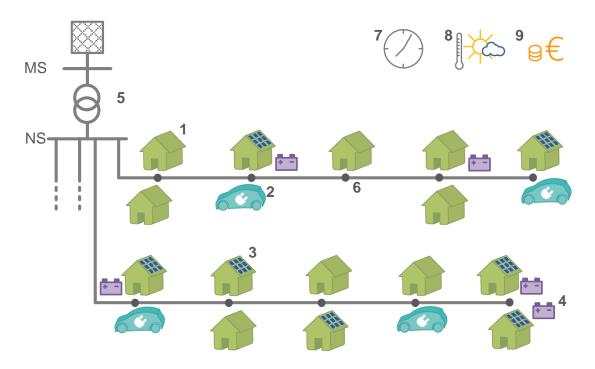
Anforderungen an die Spannungsqualität im Verteilnetz

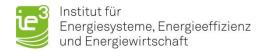
- EN 50160 gibt Toleranzband für Spg.-Abweichungen von Nennspannung in Mittel-, Umspann- und Niederspannungsebene vor
- Aufteilung des Spannungsbandes bei getrennter Berechnung notwendig
- → Bedarfsgerechte, optimale Aufteilung des Spannungsbandes nicht ohne weiteres möglich
- → höhere Investitionskosten beim Netzaus- und –umbau



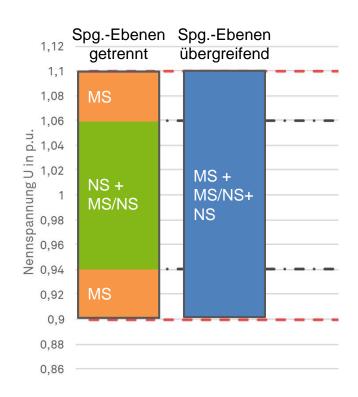


Simulationswerkzeug zur optimierten Netzausbauplanung (SIMONA)

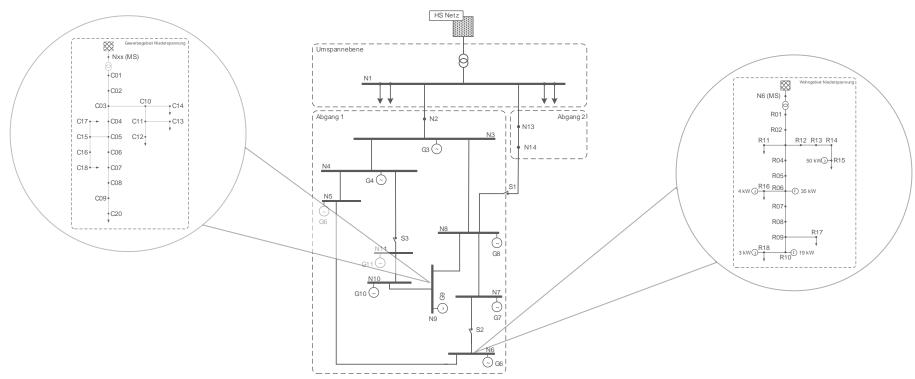

- Agentenbasierte
 Simulationsumgebung zur
 Generierung von detaillierten,
 realitätsnahen Zeitreihen
- Bottom-up Modell des elektrischen Energiesystems
- frei parametrierbar
- ermöglicht Berücksichtigung von Interdependenzen

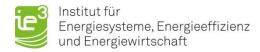


Prinzipielle Funktionsweise von SIMONA

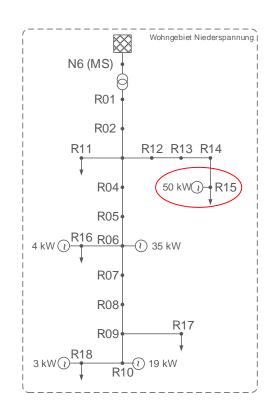


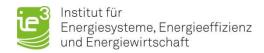
Untersuchungsfälle


- Spannungsebenen getrennt
 - ± 4 % MS / ± 6 % NS
 - Knotenspannung Schlupfknoten auf 1,0 p.u. festgelegt
- Spannungsebenenübergreifend
 - keine Aufteilung des Spannungstoleranzbandes notwendig
 - Knotenspannung Schlupfknoten schwankt

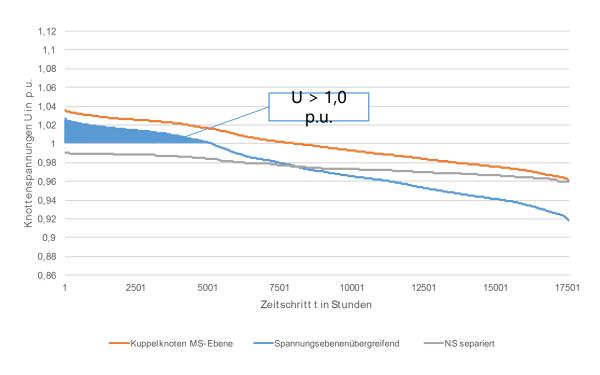


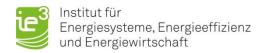
Untersuchungsfall - Netzstruktur



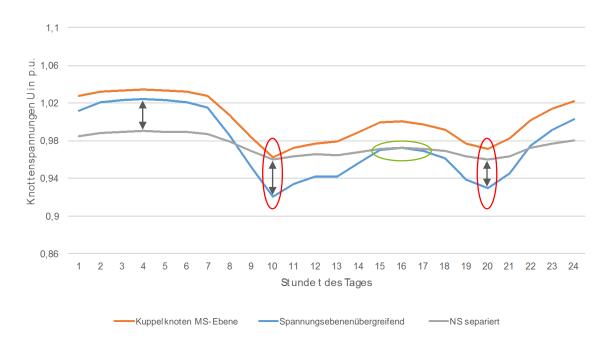


Ergebnisse

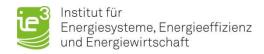

- Fokus liegt auf
 Knotenspannungen der betrachteten Netze
 - Strangenden besonders interessant
- Exemplarische Darstellung Untersuchungen an Niederspannungsnetz N601
 - Knoten 15



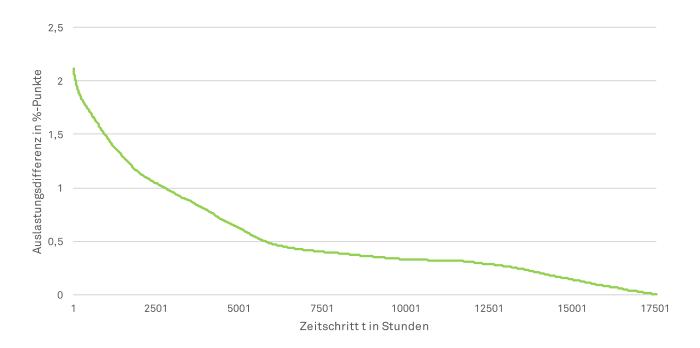
Exemplarische geordnete Jahresdauerlinie

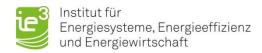


Exemplarischer Tagesverlauf Knotenspannungen

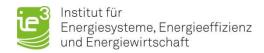

Differenzen

pot. kritische Zeitpunkte


U Kuppelknoten = 1,0 p.u.

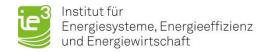


Differenz der Leitungsauslastung beider Simulationen



Schlussfolgerungen

- Separater Ansatz liefert gute Ergebnisse hinsichtlich Nähe zu Spannungsgrenzen
- Spannungsebenenübergreifender Ansatz lieferte Hinweise auf möglicherweise kritische Situationen
- Differenzen
 - Knotenspannungen $|\Delta u_{\rm Lim}| = 3.6 \cdot 10^{-3} \, \rm p. \, u.$
 - Leitungsauslastung bis zu 2,1 %-Punkten
- Mögliche Auswirkungen
 - durch P&B maximal zulässige Leitungsauslastung vorgegeben
 - Betrieb mit Q(U)-Kennlinie kann zu Problemen führen



Zusammenfassung & weiterführender Forschungsbedarf

- Unterschiede separate vs. spannungsebenenübergreifender Simulation
- Wirtschaftlich effizienter Ausbau und verlässliche Risikoabschätzung erfordern Berücksichtigung neuer Randbedingungen in der Planung
- Spannungsebenenübergreifende Simulation stellt dazu einen vielversprechenden Ansatz dar
- Zukünftig sind Einflüsse von Regelalgorithmen (semi-statisch) zu untersuchen

Vielen Dank für Ihre Aufmerksamkeit!

Johannes Hiry, M. Sc.

Emil-Figge-Straße 70 | 4. Etage, Raum 4.31 johannes.hiry@tu-dortmund.de 0231 755 2025 Email:

Tel.:

