

Institut für Prozeßtechnik, Prozeßautomatisierung und Meßtechnik

Europäische Union

Inhalt

- 1. Motivation
- 2. Projekt
- 3. THERmische EnergieSpeicherAnlage
- 4. Modellentwicklung
- 5. Zusammenfassung und Ausblick

- stetiger Ausbau EE und zunehmend volatile Einspeisung von Strom
 - Angebotsschwankungen in den Übertragungsnetzen
 - Notwendigkeit der Erhöhung von Betriebsflexibilität und Lastdynamik der thermischen Kraftwerke zur Kompensation der Residuallast
- Kompensation der Residuallast erforderlich
- Wandel der Erzeugungslandschaft
 - regionaler Zubau von Windenergieanlagen
 - Veränderungen im Kraftwerkspark
 - Verzögerungen im Netzausbau
- → Anstieg netzstabilisierender Maßnahmen, wie z. Bsp.
 - Redispatch
 - Einsatz von Netzreservekraftwerken
 - Einspeisemanagement (EinsMan)

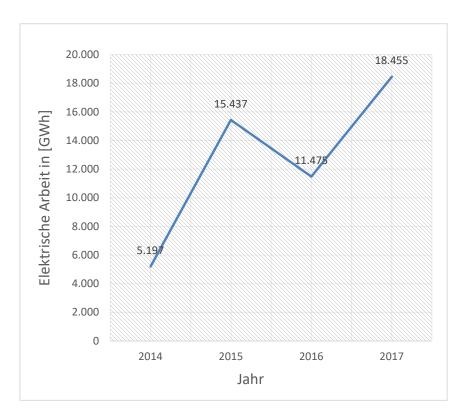


Abb. 1: Redispatch – Gesamtmenge (Erhöhungen und Reduzierungen) der Marktkraftwerke der Jahre 2014 – 2017 in Deutschland [4, 5, 6, 7]

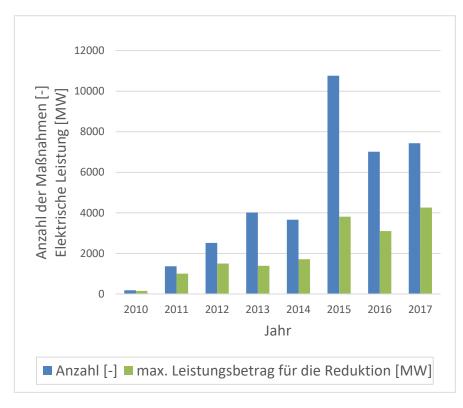


Abb. 2: Anzahl der Maßnahmen und elektrische Leistung nach EnWG §13 Abs. 2 von 50 Hertz der Jahre 2010 – 2017 [8]

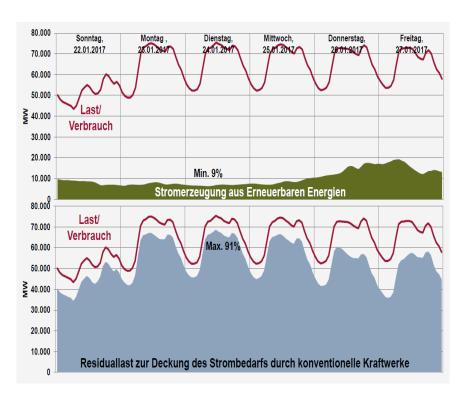


Abb. 3: Volatilität der Einspeisung aus EE – niedrige Einspeisung, Deckung des Strombedarfs 22. Januar – 27. Januar 2017 [12]

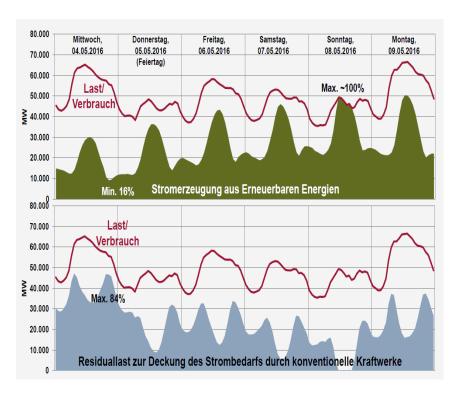


Abb. 4: Volatilität der Einspeisung aus EE – hohe Einspeisung, Deckung des Strombedarfs 04. Mai – 09. Mai 2016 [12]

- Anstieg der Maßnahmen in den letzten Jahren
 - Verzögerungen im Netzausbau
 - stetiger Ausbau an EE-Anlagen
- Gründe für den Rückgang der Redispatch- und Einspeisemanagementmaßnahmen im Jahr 2016:
 - vermehrter Einsatz von Netzreservekraftwerken
 - windschwaches Jahr
 - optimiertes Kraftwerks-Einsatzkonzept
 - flexible Kraftwerke werden in den kommenden Jahren weiterhin benötigt
 - → Maßnahmen zur Flexibilisierung insbesondere durch Speichertechnologien sind notwendig

2. Projekt

Die Arbeiten ordnen sich in das vom Europäischen Sozialfond (ESF) finanzierte Vorhaben "Nachwuchsforschergruppen" ein.

- Laufzeit: 01.08.2018 31.07.2020
- verankert im Graduiertenkolleg der Hochschule Zittau / Görlitz
 - "Neue Systeme zur Ressourcenschonung"
 - Ziel: Entwicklung von Systemen zur Ressourcenschonung
- Inhalt der Arbeit ist eine zukunftssichere Stromerzeugung in Kraftwerken mit dem Fokus auf unverzichtbare moderne Wärmekraftwerke, deren Flexibilisierung und Wirtschaftlichkeit

2. Projekt

Entwicklung eines
Hochleistungsspeichersystems
(HLSS)

Entwicklung skalierfähiger Simulationsmodelle

Modellentwicklung und dynamische Simulation mit dem Simulationstool DynStar für die wirtschaftliche Bewertung thermischer Energiespeicher in einen Kraftwerksprozess

3. THERmische EnergieSpeicherAnlage

- Nachbildung und Analyse thermischer Kreisprozesse in Analogie zu thermischen Kraftwerken
- zentrales Element:Gleichdruckverdrängungsspeicher
- Fokussierung auf Integration thermischer Energiespeicher zur zeitlichen Entkopplung zwischen Wärmequelle und Wärmesenke
- Nutzung der Forschungsergebnisse zur Auslegung von Wärmespeichern

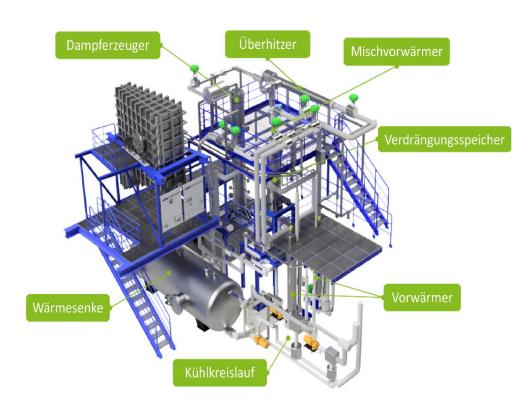


Abb.5: VA THERESA [2]

3. THERmische EnergieSpeicherAnlage

- vereinfachter
 Kreisprozess eines
 Kraftwerkblocks mit
 Kessel, Turbine,
 Kondensator,
 Vorwärmschiene und
 Speisewasserbe hälter
- mögliche Einbindung des Speichers in ein Kraftwerk in HD-Schiene & Nutzung des Anzapfdampfes

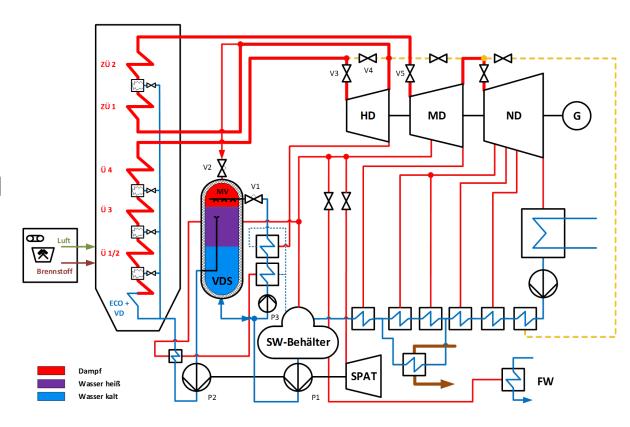
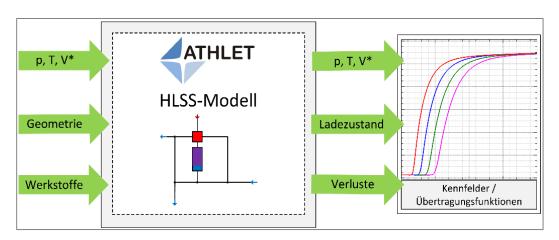
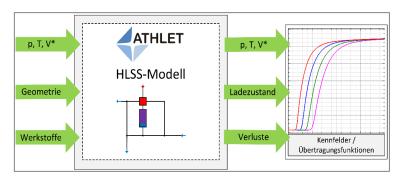


Abb. 6: Konzept zur Einbindung eines thermischen Energiespeichers in eine Bestandsanlage

- Thermohydraulikcode ATHLET ist ein validierter Systemcode der GRS
- ATHLET ist ein in der Reaktorsicherheit zugelassener Code zur Störfallanalyse und besitzt eine hohe Güte
- Vorteile
 - dynamische Prozesssimulation
 - Reproduktion des Strömungsweges in industriellen Großanwendungen
 - Nachbildung der Prozess- und Regelungstechnik
 - einfache Modellskalierung
 - kurze Rechenzeit

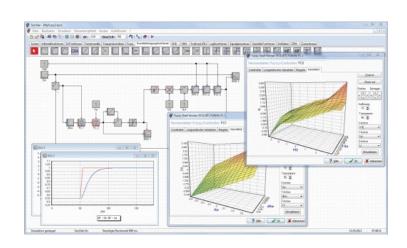
- Entwicklung eines auf Wirtschaftlichkeit optimierten
 Simulationsmodells für die Auslegung thermischer Energiespeicher zur Integration in einen Kraftwerksprozess
- Grundlage bildet das validierte Simulationsmodell eines HLSS im Simulationscode ATHLET




Abb. 7: Experimentell validiertes Simulationsmodell des Hochleistungsspeicher-systems im Simulationscode ATHLET

13

- erfolgreiche Modellvalidierung f
 ür das HLSS
- das Modell des HLSS wird verfahrens- und reglungstechnisch abgebildet
- Berücksichtigung physikalischer Istzustände, Geometrie und Werkstoffdaten
- → als Ergebnis der Simulation k\u00f6nnen Aussagen \u00fcber den Be- und Entladezustand, die Beladecharakteristik und die Verluste des HLSS abgeleitet werden (bei gew\u00e4hlten Anfangs- und Randbedingungen)
- → Ableitung von Kennfeldern und Übertragungsfunktionen



14

- DynStar ist ein Softwareprodukt des Instituts für Prozesstechnik,
 Prozessautomatisierung und Messtechnik (IPM)
- Anwendungen:
 - Modellierung und Simulation des statischen sowie dynamischen Systemverhaltens
 - Simulation von Mess- und Regelsystemen
 - Simulation von komplexen Prozessen in der Energietechnik
 - Datenerfassung und –aufzeichnung
 - Prozessbedienung und –überwachung
- bereits validierte Modelle vorhanden

26.11.2018

- zur Untersuchung der wirtschaftlichen und technischen Einflussparameter wird für die weitere Modellentwicklung das Simulationstool DynStar verwendet
- Kopplung des Modells aus ATHLET mit DynStar

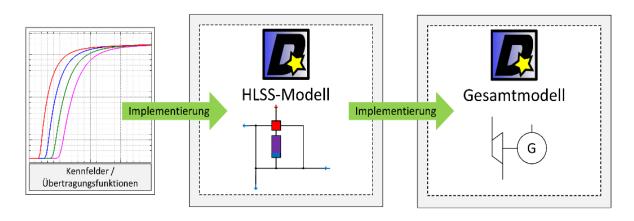
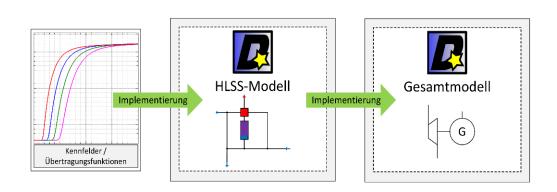



Abb. 8: Kopplung des Hochleistungsspeichersystems aus ATHLET mit dem Gesamtmodell eines thermischen Kraftwerks in DynStar

- erstellte Kennfelder bzw. Übertragungsfunktionen aus ATHLET werden als eigener Baustein in DynStar implementiert
- → DynStar besitzt bereits eine Programmbibliothek mit Standardkomponenten für thermische Kraftwerke wie Dampferzeuger, Turbine, etc.
- → Erstellung eines Gesamtmodells eines thermischen Kraftwerks

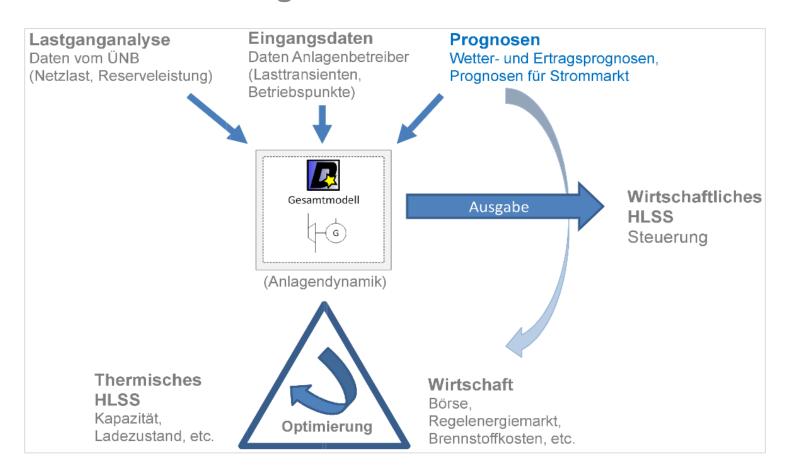


Abb. 9: Wirtschaftliche und technische Einflussfaktoren auf das Gesamtmodell eines thermischen Kraftwerks mit HLSS im Simulationstool DynStar

5. Zusammenfassung und Ausblick

- Zubau EE-Anlagen und Anstieg volatiler Stromeinspeisung
- Kompensation der Residuallast erforderlich
- Entwicklung Simulationsmodell im Simulationstool DynStar
 - Verwendung von Kenngrößen zur Dimensionierung und Integration von thermischen Hochleistungsspeichersystemen in einen thermischen Kraftwerksprozess
 - Darstellung des Flexibilitätsbedarfs (Speicherbedarf und Häufigkeit)
 - Darstellung von Zusatzerlös durch Integration des Speichers sowie der Investitionskosten
- Kopplung des experimentell validierten Simulationsmodells aus ATHLET mit DynStar
- Übertragung auf andere Anwendungsgebiete innerhalb der Energietechnik

Kontakt:

Ansprechpartner/-in:

Prof. A. Kratzsch

Direktor

Institut für Prozeßtechnik, Prozeßautomatisierung und

Meßtechnik

Telefon: +49 3583 - 612 4282 Telefax: +49 3583 - 612 3449 E-Mail: A.Kratzsch@hszg.de Web: www.hszg.de/ipm

Hausanschrift:

Hochschule Zittau/Görlitz IPM Theodor-Körner-Allee 16 02763 Zittau

26.11.2018

Quellen

- (1) Schneider, C.; Braun, S.; Klette, T.; Härtelt, S.; Kratzsch, A.: Development of Integration Methods for Thermal Energy Storages into Power Plant Processes, Proceedings of the ASME POWER & ENERGY Conference 2016, June 26-30, 2016, Charlotte, North Carolina, USA
- (2) https://theresa.ipm.hszg.de, 2018
- (3) Fiß, D., Vogel, C.: Advanced analysis of the structure of a reactor protection system, Proceedings of the 23rd International Conference on Nuclear Engineering, May 17-21, 2015, Chiba, Japan
- (4) Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: "Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen Gesamtjahr und Viertes Quartal 2017"; Stand: 06.07.2018
- (5) Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: "Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen Viertes Quartal und Gesamtjahr 2016"; Stand: 29. Mai 2017
- (6) Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: "Monitoringbericht 2015"; Stand: 10. November 2015; Korrektur: 21. März 2016
- (7) Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen: "3. Quartalsbericht 2015 zu Netz- und Systemsicherheitsmaßnahmen Viertes Quartal 2015 sowie Gesamtjahresbetrachtung 2015"; Stand: 02. August 2016
- (8) https://www.50hertz.com/de, 2018
- (9) Klette, T.; Gubsch, T.; Vogel, C.; Kratzsch, D.; Braun, S.; Härtelt, S.; Kratzsch, A.: ATHLET simulation code: Model validation of a thermal high-performance storage system, 3rd International Conference on Sustainable and Renewable Energy Engineering, May 9.-11. 2018, University of Salamanca, Zamora, Spain (paper and presentation)
- (10) Klette, T.; Braun, S.; Kratzsch, A.; Schneider, C.: Model development and dynamic simulation of a thermal high-performance storage system with the simulation code ATHLET to increase the flexibility of thermal power plants, International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 7, No. 2, April 2018, pp. 43-50, ISSN: 2319-2518
- (11) Klette, T.; Kratzsch, A.: Dynamische Simulation und experimentelle Validierung eines thermischen Energiespeichers für die Flexibilisierung thermischer Kraftwerke, Smart Energy 2017, 9.–10. November 2017, Dortmund, pp. 25-35, ISBN 978-3-86488-125-1
- (12) Bundesverband der Energie- und Wasserwirtschaft e.V.: "Fakten und Argumente Erneuerbare Energien und das EEG: Zahlen, Fakten, Grafiken (2017)"; 10. Juli 2017

26.11.2018

Erläuterungen

- Netzreserve § 13d EnWG
 - dient zur Entlastung des Stromnetzes
 - hoher Bedarf im Winter
 - hohe Produktion der Windenergieanlagen im Norden (Winter)
 - Netzengpässe, Nord-Süd-Gefälle (KW im Norden werden abgeschaltet und Anlagen mit gleicher Leistung im Süden hochgefahren - Redispatch)
 - Netzreserve (hauptsächlich in Bayern und Baden-Würtemberg)
 - Vorhaltung flexibler KW-Leistungen, die bei Netzengpässen, Spannungsverlusten oder Blackout einspringen können
 - wird aus Anlagen gebildet, die momentan nicht betriebsbereit, aber vom ÜNB als systemrelevant eingestuft sind
 - Anlagen der Netzreserve k\u00f6nnen auch bei Ausschreibungen der Kapazit\u00e4tsreserve teilnehmen

Erläuterungen

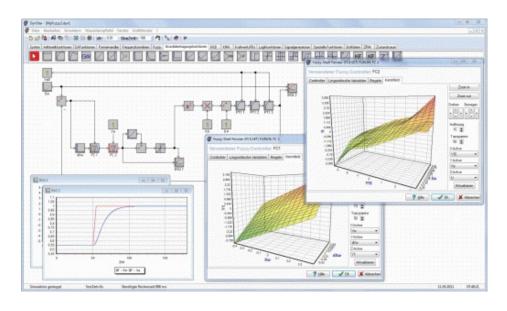
- Kapazitätsreserve neuer § 13e EnWG
 - Vorhaltung von Leistungskapazitäten, wenn Angebot und Nachfrage auf dt. Strommärkten nicht ausgeglichen werden können
 - zeitlich hinter Strombörse und Regelenergiemärkten eingestuft
 - ab Winterhalbjahr 2018/19 schrittweise Überführung der KW in Kapazitätsreserve
 - nehmen nicht mehr aktiv am Strommarkt teil (Vermarktungsverbot)
 - ausschließlich auf Signal des ÜNB wird Leistung erhöht
 - wettbewerbliche Ausschreibung der Kapazitätsreserve
 - jährliche Vergütung, welche auf Netzentgelte umgelegt werden
 - Anlagen die aus der Kapazitätsreserve gehen, müssen anschließend stillgelegt werden (Rückkehrverbot)

23

Erläuterungen

- Sicherheitsbereitschaft § 13g EnWG
 - Paragraph zur Stilllegung Braunkohlekraftwerken
 - KW dürfen nicht mehr am Markt aktiv sein
 - Vorhaltung für den Fall, dass reguläre Maßnahmen nicht ausreichen (Redispatch, Regelenergie, Netzreserve & Kapazitätsreserve)
 - Anlagen müssen innerhalb von 240 h (10 Tagen) betriebsbereit sein
 - danach innerhalb von 11 h auf Mindestleistung
 - nach weiteren 13 h auf Nettoleistung
 - 8 Kraftwerksblöcke in Sicherheitsbereitschaft
 - Buschhaus (MIRAG, 1. Okt. 2016)
 - Frimmersdorf (2 Blöcke, RWE, 1. Okt. 2017)
 - Niederaußern (2 Blöcke, RWE, 1. Okt. 2018)
 - Jänschwalde (2 Blöcke, Vattenfall, 1.Okt. 2018 u. 1. Okt. 2019)
 - Neurath (RWE, 1. Okt. 2019)

24



DynStar – Funktionen (Funktionsbausteinbibliotheken) u.a.:

ď

- Arithmetische Funktionen
- DiskreteÜbertragungsfunktionen
- Frequenzgangverhalten
- Fuzzy-Modell
- Künstliche neurale Netzwerke
- Lineare/nichtlineare
 Übertragungsfunktionen auf Basis:
- Komponenten der Kernkraftwerke
- Kraftwerkskomponenten

- Verbrennung
- Zustandsraum
- **–**

Partikelablagerung

